Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells.
نویسندگان
چکیده
BACKGROUND Transplantation of ex vivo expanded circulating endothelial progenitor cells (EPCs) from peripheral blood mononuclear cells improves the neovascularization after critical ischemia. However, the origin of the endothelial progenitor lineage and its characteristics have not yet been clearly defined. Therefore, we investigated whether the phenotype and functional capacity of EPCs to improve neovascularization depend on their monocytic origin. METHODS AND RESULTS Monocytic CD14+ cells were isolated from mononuclear cells and incubated on fibronectin-coated dishes in endothelial medium in the presence of vascular endothelial growth factor. After 4 days of cultivation, adherent cells deriving from CD14+ or CD14- mononuclear cells showed equal expression of endothelial marker proteins and capacity for clonal expansion as determined by measuring endothelial colony-forming units. In addition, transplanted EPCs (5x10(5) cells) deriving from CD14+ or CD14- cells were incorporated into vascular structures of nude mice after hind-limb ischemia and significantly improved neovascularization from 0.27+/-0.12 (no cells) to 0.66+/-0.12 and 0.65+/-0.17, respectively (P<0.001; laser Doppler-derived relative blood flow). In contrast, no functional improvement of neovascularization was detected when freshly isolated CD14+ mononuclear cells without ex vivo expansion were used (0.33+/-0.17). Moreover, macrophages or dendritic cells differentiated from isolated CD14+ cells were significantly less effective in improving neovascularization than EPCs cultivated from the same starting population (P<0.01). CONCLUSIONS These data demonstrate that EPCs can be generated from nonmonocytic CD14- peripheral blood mononuclear cells and exhibit a unique functional activity to improve neovascularization after hind-limb ischemia.
منابع مشابه
Colony Forming Unit Endothelial Cells Do not Exhibit Telomerase Alternative Splicing Variants and Activity
Introduction: Endothelial progenitor colony forming unit-endothelial cells (CFU-EC) were first believed to be the progenitors of endothelial cells, named endothelial progenitor cells. Further studies revealed that they are monocytes regulating vasculogenesis. The main hindrance of these cells for therapeutic purposes is their low frequency and limited replicative potentials. This study was unde...
متن کاملEffect of two different intensity of physical activity on circulating endothelial progenitor cells (EPC) in healthy young women
The purpose of this study was to determine the effect of two different intensities of physical activity on circulating endothelial progenitor cells (EPC) in healthy young women. For this purpose, 15 female students from volunteers were randomly selected via questionnaire (group 1: mean age 22 ±1/8 years, BMI 20/81±1/91 kg/m2, n = 8. group 2: mean age 21 ±1/5 years, BMI 20/38 ± 1/66 kg/m2, ...
متن کاملEnhanced angiogenic potency of monocytic endothelial progenitor cells in patients with systemic sclerosis
INTRODUCTION Microvasculopathy is one of the characteristic features in patients with systemic sclerosis (SSc), but underlying mechanisms still remain uncertain. In this study, we evaluated the potential involvement of monocytic endothelial progenitor cells (EPCs) in pathogenic processes of SSc vasculopathy, by determining their number and contribution to blood vessel formation through angiogen...
متن کاملErythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization.
Increasing evidence suggests that postnatal neovascularization involves the recruitment of circulating endothelial progenitor cells (EPCs). Hematopoietic and endothelial cell lineages share common progenitors. Cytokines formerly thought to be specific for the hematopoietic system have only recently been shown to affect several functions in endothelial cells. Accordingly, we investigated the sti...
متن کاملAging of progenitor cells: limitation for regenerative capacity?
It is becoming clear that postnatal neovascularization involves circulating endothelial progenitor cells (EPCs), which home to sites of neovascularization and differentiate into endothelial cells in a manner consistent with a process initially termed “vasculogenesis” (1). These circulating EPCs derive from hematopoietic stem cells and contribute to reparative processes, including neovasculariza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 108 20 شماره
صفحات -
تاریخ انتشار 2003